A R T I C L E S
Published on Web 09/21/2004

Electron-Deficient Bonding in \downarrow Rhomboid Rings

Musiri M. Balakrishnarajan and Roald Hoffmann*
Contribution from the Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853

Received June 2, 2004; E-mail: rh34@cornell.edu

Abstract

The bonding environment of boron is usually thought about in terms of localized $2 \mathrm{c}-2 \mathrm{e} / 3 \mathrm{c}-2 \mathrm{e}$ bonding (as in diborane) or completely delocalized polyhedral bonding (as in $\mathrm{B}_{12} \mathrm{H}_{12}{ }^{2-}$). Recently, a number of boron compounds having a rhomboidal B_{4} framework have been synthesized; these show an amazing variation in their skeletal electron count, one that cannot be interpreted in familiar ways. In this report, we systematically explore the origin of the range of electron counts in these compounds. We find that four skeletal MOs are primarily responsible for keeping the B_{4} skeleton together. As a subunit in a macropolyhedral environment, termed rhombo- B_{4}, such an arrangement of B atoms deviates from Wade's rule by three electron pairs (if treated as a distorted arachno system derived from $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$). Aided by this analysis, we examine the nature of bonding in $\mathrm{Na}_{3} \mathrm{~B}_{20}$, where the rhombo- B_{4} unit forms linear chains fusing closo- B_{7} units. Theory suggests that this structure requires one more electron per formula unit for optimal bonding. Finally, we study the nature of bonding in $\beta-\mathrm{SiB}_{3}$, where silicon atoms also adopt the rhomboid framework.

Molecules with the geometry of a perfect square are rare for the main group elements. The exceptions are $\mathrm{S}_{4}{ }^{2+}, \mathrm{Te}_{4}{ }^{2+}, \mathrm{Se}_{4}{ }^{2+}$, and $\mathrm{P}_{4}{ }^{2-}$ ions ${ }^{1}$ and some organic systems with exocyclic double bonds. ${ }^{2}$ A ring-puckering distortion of the square is common in saturated hydrocarbons such as cyclobutane and even in organic systems that should be aromatic by Hückel's rule. ${ }^{3}$ Recently, a variety of electron-deficient, boron-containing molecules with characteristic, nearly planar rhombic rings ${ }^{4-6}$ were synthesized. These systems appear to exist with a wide range of electron counts. The rhomboid is also found as a substructure in the recently characterized extended structures of $\mathrm{Na}_{3} \mathrm{~B}_{20}{ }^{7}$ and $\beta-\mathrm{SiB}_{3} .{ }^{8}$ In this report, we explore the nature of bonding in these

[^0]systems, probing the mystery behind the persistence of the rhomboid skeleton in such diverse environments.
Figure 1 shows some representative examples of experimentally characterized molecules with a B_{4} rhomboid skeleton. Assuming 2c-2e (two-centered-two electron) exo-rhomboid bonds, molecule $\mathbf{1 a}^{4 \mathrm{a}}$ has four electron pairs left for the bonding in the rhombus. Some related systems with a variety of substituents were also been reported. ${ }^{4 b, c}$ A similar assumption leads to three electron pairs for $\mathbf{1 b}^{5}$ and two electron pairs for 1c. ${ }^{6}$ Molecule 1d, $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$, was synthesized 40 years ago; ${ }^{\text {ad }}$ several polyhedra contain this rhomboid B_{4} skeleton. ${ }^{9}$ An interesting paradox in electron counting arises for $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$; it can be formally constructed from two $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ molecules by removing two hydride ions. If we then allocate $(n+1)$ electron pairs, $n=10$, for the individual closo- B_{10} units, following Wade's rules, ${ }^{10}$ we are left with the absurdity of having no electrons left to hold the two polyhedra together. It is clear that electrons in this system are delocalized over the entire skeleton. This rhomboidal framework is also observed in molecules where one or more boron atoms are replaced by isolobal transitionmetal fragments. ${ }^{11}$
(7) (a) Albert, B. Angew. Chem., Int. Ed. 1998, 37, 1117-1118. (b) Albert, B.; Hoffmann, K. Z. Anorg. Allg. Chem. 1999, 625, 709-713.
(8) Salvador, J. R.; Bilc, D.; Mahanti, S. D.; Kanatizidis, M. G. Angew. Chem., Int. Ed. 2003, 42, 1929-1932.
(9) (a) Kaczmarczyk, A.; Dobrott, A.; Lipscomb, W. N. Proc. Natl. Acad. Sci. U.S.A. 1962, 48, 729-733. (b) Li, F.; Shelly, K.; Kane, R. R.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. 1998, 37, 1868-1979. (c) Janousek, Z.; Stibr, B.; Fontaine, X. L. R.; Kennedy, J. D.; Thornton-Pett, M. J. Chem. Soc, Dalton. Trans. 1996, 3813-3818. (d) Piepgrass, K. W.; Curtis, M. A.; Wang, X.; Meng, X.; Sabat, M.; Grimes, R. N. Inorg. Chem. 1993, 32, 2156-2163.
(10) (a) Wade, K. Chem. Commun. 1971, 792-793. (b) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1-66.
(11) Jun, C.-S.; Powell, D. R.; Haller, K. J.; Fehlner, T. P. Inorg. Chem. 1993, 32, 5071.

1a. $\mathbf{B}_{4}\left(\mathrm{BNMe}_{2}\right)_{2}\left(\mathrm{NMe}_{2}\right)_{2}$ (4 bonding pairs)

1b. $\mathbf{B}_{4} \mathbf{H}_{\mathbf{2}}\left(\mathrm{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{3}}\left(\mathrm{SiMe}_{3}\right)_{3}\right)_{\mathbf{2}}$ (3 bonding pairs)

1c. $\mathbf{B}_{4}\left(\mathrm{BF}_{2}\right)_{4} \mathrm{~F}_{4}$ (2 bonding pairs)

1d. $\mathbf{B}_{4} \mathrm{H}_{2}\left(\mathbf{B}_{8} \mathrm{H}_{8}\right)_{2}{ }^{\mathbf{2 -}} \equiv \mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$
(no (?) bonding pairs)

Figure 1. Some discrete molecular systems containing a rhomboid B_{4} skeleton. Boron atoms and boron-boron bonds are indicated in green.

Figure 2. Rhombic geometry exhibited by (a) B_{4} units in $\mathrm{Na}_{3} \mathrm{~B}_{20}$ and (b) Si_{4} units in $\beta-\mathrm{SiB}_{3}$.

The variation in the electron counts of these simple molecular systems, sharing similar core geometry, is startling. We have not mentioned the $\mathrm{B}-\mathrm{B}$ bond distances in these compounds; they are all in the range of $B-B$ bonding, though they cover a wide span. The shortest is the $B-B$ distance of $1.52 \AA$ which is the central bond of the rhomboid in compound $\mathbf{1 b} ;{ }^{5}$ the longest $1.84 \AA$ is in $\mathbf{1 d}$, the bond shared between the rhomboid B_{4} ring and B_{10} polyhedra. ${ }^{9 a}$ We will return to the distances as we discuss the individual cases.

Extended structures add further richness. Figure 2 shows two linear chains with this rhomboid skeleton in $\mathrm{Na}_{3} \mathrm{~B}_{20}{ }^{7}$ and $\beta-\mathrm{SiB}_{3}{ }^{8}$ (in the latter case, the rhomboid sublattice is made out of Si rather than B). The bonding in these phases remains to be explained. Experimentally both are found to be semiconductors; calculations on $\beta-\mathrm{SiB}_{3}$ show a definite band gap. ${ }^{8}$

For a subset of these species, $\mathbf{1 a}$ and $\mathbf{1 b}$, a neat explanation of the bonding based on ideas of σ and π aromaticity is at hand. ${ }^{4}$ In fact, some of these molecular frameworks were predicted to be stable before they were made. ${ }^{12}$ But there is lacking a global bonding outlook that encompasses all the systems in Figures 1 and 2. This is what we seek in the present report. We begin by analyzing the bonding in the B_{4} skeleton starting with a simple square $\mathrm{B}_{4} \mathrm{H}_{4}$ and from that starting point, we explore the rhomboid distortion and substitution effects systematically. From a generalized electron-counting scheme derived from this analysis, we move on to the structures of $\mathrm{Na}_{3} \mathrm{~B}_{20}$ and $\beta-\mathrm{SiB}_{3}$.

[^1]
Computational Methodology

The energies of the MOs for the molecules (as well as those of fragments) used in the interaction and correlation diagrams were derived from extended Hückel (eH) calculations. ${ }^{13}$ Geometrical optimizations of selected molecular systems were done using the Gaussian 98 suite of programs ${ }^{14}$ at the density functional based B3LYP/6-31G* level of theory ${ }^{15}$ frequency calculations characterize the nature of the stationary points. For band structures and density of states for extended structures, we employ the eH-based YAeHMOP suite of programs. ${ }^{16}$ Further, we have also used the DFT VASP program ${ }^{17}$ to optimize the structures and to produce the band structures for calibrating the eH results. In the VASP calculations, we chose ultrasoft pseudopotentials based on the projector-augmented-wave method ${ }^{18}$ using the local density approximation, ${ }^{19}$ which is ideal for arriving at equilibrium geometries. All the calculations were well converged with respect to the chosen cutoff energy and k-point sampling, unless stated otherwise.

Molecular Orbitals of Square $\left(D_{4 h}\right)$ and Rhombus $\left(D_{2 h}\right) \mathbf{B}_{\mathbf{4}} \mathbf{H}_{4}$. To understand the nature of bonding in rhomboid systems, it will be useful to analyze the evolution of molecular orbitals (MOs) with a square-rhombus distortion. The MOs of $\mathrm{B}_{4}\left(D_{4 h}\right)$ can be constructed from the valence AOs of boron, oriented conveniently into radial $\left(p_{r}\right)$, tangential $\left(\mathrm{p}_{\mathrm{t}}\right)$, and the perpendicular π sets of p orbitals $\left(\mathrm{p}_{\pi}\right)$, along with the s orbital set. In $D_{4 h}$ symmetry, both the s and p_{r} AOs transform as $a_{1 g}+e_{u}+b_{l g}$ while p_{t} transform as $b_{2 g}+e_{u}+a_{2 g}$. The degenerate e_{u} orbitals will show the most mixing, of s, p_{t}, and p_{r}. The four MOs arising from p_{π} orbitals transform as $a_{2 u}+e_{g}+b_{2 u}$ and will not mix with any of the other MOs. Figure 3 shows the $\mathrm{B}_{4}{ }^{4-}\left(D_{4 h}\right)$ MOs at left in schematic form, indicating the major contributions to the calculated MOs (at B-B $1.65 \AA$). Note the expected orderings: $\mathrm{a}_{2 \mathrm{u}}$ below e_{g} in the p_{π} set, $a_{1 g}$ below e_{u} below $b_{1 g}$ for the s orbitals. Some high-lying MOs are omitted.

In $\mathrm{B}_{4}{ }^{4-}\left(D_{4 h}\right)$, all four MOs that have predominant s character are filled and lie very low in energy. The all-bonding combinations of the $\mathrm{p}_{\pi}\left(\mathrm{a}_{2 \mathrm{u}}\right), \mathrm{p}_{\mathrm{t}}\left(\mathrm{b}_{2 \mathrm{~g}}\right)$, and $\mathrm{p}_{\mathrm{r}}\left(\mathrm{a}_{1 \mathrm{~g}}\right)$ are also low-lying. On interaction with four H^{+}ions, as depicted in the first to second column in Figure 4 (the MOs of the four H^{+}span the same irreducible representation as those of boron s and p_{r}), all the orbitals with substantial radial character are stabilized, as expected-their overlaps with external hydrogen atoms are largest. This is seen in the $e_{u}, a_{1 g}$, and $b_{1 g}$ orbitals. In the resulting MO scheme for square $\mathrm{B}_{4} \mathrm{H}_{4}$, there are four levels very close in energy in the frontier region, with six electrons in them; this is recognizable as a typical first- or second-order Jahn-Teller situation. The distortion of a square to a rhombus will remove this approximate degeneracy.

The rhomboid distortion involves the movement of two diagonal boron atoms $\left(\mathrm{B}_{\mathrm{S}}, \mathrm{S}\right.$ for short diagonal and L for longer diagonal) toward each other, to a bonding contact (taken as $\mathrm{B}_{\mathrm{S}}-\mathrm{B}_{\mathrm{S}} 1.65 \AA$ for the calculation shown). The molecule is still planar but the symmetry is reduced from $D_{4 h}$ to $D_{2 h}$. The reduction in symmetry splits the

[^2]

Figure 3. Correlation of MOs between $D_{4 h}$ and $D_{2 h}$ symmetry in $\mathrm{B}_{4} \mathrm{H}_{4}$ and its building blocks. MOs of differing symmetries in $D_{2 h}$ geometry are shown with distinct colors.

Figure 4. (a) Strategy for widening of the HOMO-LUMO gap of B_{4} by the tangential π-donor and π-acceptor interactions. (b) DFT-optimized geometry of $\mathrm{B}_{4}\left(\mathrm{BH}_{2}\right)_{2} \mathrm{~F}_{2}$.
degeneracy of the e_{u} and e_{g} MOs. The $B_{4} H_{4}$ frontier e_{u} (which has near equal mixing of both p_{t} and p_{r}) splits strongly into $b_{2 u}+b_{1 u}$; the radial contribution to e_{u} is behind this substantial splitting. For $\mathrm{B}_{4} \mathrm{H}_{4}$ $\left(D_{2 h}\right)$, the higher member of the set $\left(\mathrm{b}_{2 \mathrm{u}}\right)$ is vacated, and the all-bonding tangential MO ($\mathrm{b}_{2 \mathrm{~g}}$) is filled. As a whole, this distortion results in a $\mathrm{B}_{4} \mathrm{H}_{4}$ framework that has a reasonable $\operatorname{HOMO}\left(\mathrm{b}_{3 \mathrm{~g}}\right)-\mathrm{LUMO}\left(\mathrm{b}_{2 \mathrm{u}}\right)$ gap.

However, the gap is not large enough to ensure stability. With hydrogens as substituents, calculations indicate that neither square nor rhombus systems are minima on the potential energy surface ${ }^{20}$ as they move toward bridging positions distorting planarity. However, the HOMO-LUMO gap can be increased (with it, likely the stability) by substitution strategies. As shown in Figure $4 \mathrm{a}, \pi$-donors at B_{L} would be stabilized by the LUMO and tangential π-acceptors substituted at B_{S} would stabilize the HOMO. The net result of both substitutions should be a larger gap.

To substantiate this reasoning, we substituted fluorine atoms across the longer diagonal $\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{L}}\right)$ for tangential π-donation and appropriately oriented $-\mathrm{BH}_{2}$ groups (p orbital in the B_{4} plane) across the shorter diagonal $\left(\mathrm{B}_{\mathrm{S}}-\mathrm{B}_{\mathrm{S}}\right)$ as the tangential π-acceptor. The size of the substituents is kept small to allow us to explore the system at a good level of theory. The resulting $D_{2 h}$ symmetric $\mathrm{B}_{4}\left(\mathrm{BH}_{2}\right)_{2} \mathrm{~F}_{2}$ (Figure 4b) is a minimum on its potential energy surface at the B3LYP/6-311+G** level.

Are the deduced requirements for stabilization consistent with the molecules known in this class? ${ }^{4}$ Reasonably so; for example, the system studied by Siebert and co-workers, ${ }^{4 a} \mathrm{~B}_{4}\left(\mathrm{NMe}_{2}\right)_{2}\left(\mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}\right)_{2}$ (Figure 1a), has a nearly $D_{2 h}$-symmetric B_{4} skeleton stabilized by the tangential π-acceptor $\mathrm{B}-\left(\mathrm{NMe}_{2}\right)_{2}$ groups across the shorter diagonal and π-donor $-\mathrm{NMe}_{2}$ groups across the longer diagonal of the B_{4} ring. The B_{S} substituents are experimentally slightly out of plane, but the external

5a. $\mathbf{B}_{4}\left(\mathbf{B}\left(\mathrm{NMe}_{2}\right)_{2}\right)_{3} \mathbf{N}\left(\mathrm{Et}_{2}\right)$

5b. $\mathbf{B}_{4}\left(\mathrm{C}_{3} \mathbf{H}_{3} \mathrm{SiMe}_{3}\right)_{2}$

Figure 5. Two experimentally characterized $\mathrm{B}_{4} \mathrm{R}_{4}$ molecules. The Me, Et, H , and SiMe_{3} substituents are indicated schematically by a single "atom".

NBN groups are indeed oriented for π-acceptance (roughly perpendicular to the ring). The donor dimethylamino substituents, however, are not optimally oriented for π-donation, for their CNC plane is observed to be roughly in the B_{4} plane. There could still be some π-type donation from $\mathrm{C}-\mathrm{N}-\mathrm{C} \sigma$-orbitals. Model calculations point to a variable degree of distortion of the substituents away from the B_{4} ring. ${ }^{4,21,22}$ It may well be that steric congestion is determinative in setting the geometry and stability of this system.

Two more molecules synthesized by Berndt's group fall in this class $^{4 \mathrm{bbc}}$ (Figure 5). In molecule $\mathbf{5 a}$, the NMe_{2} groups of 1a are replaced by $-\mathrm{NEt}_{2}$ and $-\mathrm{B}\left(\mathrm{NMe}_{2}\right)$, groups at the longer diagonal $\mathrm{B}_{\mathrm{L}} .{ }^{4 b}$ Here, the π-donor $-\mathrm{B}\left(\mathrm{NMe}_{2}\right)$ rotates out of plane so that the NBN plane is approximately perpendicular $\left(\sim 81^{\circ}\right)$ to the \mathbf{B}_{4} plane. In molecule $\mathbf{5 b}$, all the four substituents are replaced by alkyl groups. ${ }^{4 \mathrm{c}}$ Calculations (not reported here) show that these substitutions increase the HOMOLUMO gaps sufficiently so as to ensure stability.

The $B_{4} R_{4}$ system is very rich in its geometrical possibilities. The planar rhomboid actually occurs in a minority of the structures studied to date. $\mathrm{B}_{4} \mathrm{R}_{4}$ with $\mathrm{R}=\mathrm{Cl},{ }^{23} \mathrm{CMe}_{3},{ }^{24}$ and tmp^{25} (2,2,6,6-tetramethylpiperidino) are tetrahedral. Interesting in this context is $\mathrm{B}_{4}\left(i-\mathrm{Pr}_{2} \mathrm{~N}\right)_{4}$, with a folded B_{4} ring between planar and tetrahedra. ${ }^{25}$ The rearrangement of rhomboidal B_{4} to tetrahedral B_{4} is symmetry forbidden, just like square- B_{4} to rhomboid B_{4}. The later, popularly known as diamond-square-diamond rearrangement (DSD) has been repeatedly studied theoretically, ${ }^{26}$ ever since it was first proposed by Lipscomb. ${ }^{27}$

Braunstein et al. have studied the rearrangement of the rhomboid to a tetrahedron in transition-metal complexes. ${ }^{28}$

Evolution of the Skeletal MOs of the Rhomboid upon Increased exo-Substitution. We now move on to more complex substitution patterns. To simplify things, we leave the four most bonding MOs of $\mathrm{B}_{4} \mathrm{H}_{4}$ at the bottom (Figure 3) out of consideration. These MOs span the same irreducible representation as those subduced by four $\mathrm{B}-\mathrm{H}$ bonds and we will take the lowest four orbitals primarily as such (though we are well aware that $\mathrm{B}-\mathrm{B}$ and $\mathrm{B}-\mathrm{H}$ bonding are mixed; more on this below). We begin then in the second column of Figure 6, and proceed to add hydrogens stepwise. $D_{2 h}$ symmetry was maintained for all of the model systems.

Consider first adding a hydrogen atom to each B_{L} of $\mathrm{B}_{4} \mathrm{H}_{4}$ (Figure 6) to form planar $\mathrm{B}_{4} \mathrm{H}_{6}\left(D_{2 h}\right)$. In this process, two more electrons are brought to the system. The two incoming hydrogens form symmetric and antisymmetric combinations, which will interact strongly with orbitals having tangential character at B_{L}. One can see this in the stabilization of $b_{2 u}$ and $b_{3 g}$ as one moves from the second to the third column in Figure 6, resulting in a substantial HOMO-LUMO gap. Though $\mathrm{B}_{4} \mathrm{H}_{6}$ has two more $\mathrm{B}-\mathrm{H}$ bonds than $\mathrm{B}_{4} \mathrm{H}_{4}$, only one additional MO is getting filled. Hence, we need to count $b_{3 g}$ along with $b_{2 u}$ as part of the $\mathrm{B}-\mathrm{H}$ bond set, to fit a localized ($2 \mathrm{c}-2 \mathrm{e}$) $\mathrm{B}-\mathrm{H}$ bond description. This leaves only three MOs ($\mathrm{a}_{\mathrm{g}}, \mathrm{b}_{1 \mathrm{u}}$, and $\mathrm{b}_{3 \mathrm{u}}$) for formal bonding in the B_{4} skeleton.

Does the reduced number of framework MOs signal the weakened bonding in the rhombus? To probe this, we computed the Mulliken overlap population (OP); the results are shown in Table 1.

While moving from $\mathrm{B}_{4} \mathrm{H}_{4}$ to $\mathrm{B}_{4} \mathrm{H}_{6}$, the OP between $\mathrm{B}_{\mathrm{S}}-\mathrm{B}_{\mathrm{L}}$ decreases, as expected. But, surprisingly, the OP increases across $B_{S}-B_{S}$, despite filling an additional $\mathrm{MO}\left(\mathrm{b}_{2 \mathrm{u}}\right)$ which, on the face of it, is antibonding in this region. To understand this anomaly, we probed the contributions to the OP for $\mathrm{B}_{\mathrm{S}}-\mathrm{B}_{\mathrm{S}}$ for every individual skeletal MO (Table 2).

The OP values indicate that the antibonding interaction across $\mathrm{B}_{\mathrm{S}}-$ B_{S} is actually very small in $b_{2 u}$ for $B_{4} H_{6}$. The bonding interactions between $B_{S}-B_{S}$ in $b_{l u}$ and a_{g} are slightly increased while the

Figure 6. Correlation of the skeletal $\mathrm{B}_{4}\left(D_{2 h}\right)$ MOs with the addition of exo substituents. MOs of dissimilar symmetries are shown with distinct colors.

Table 1. Overlap Population between Boron Atoms in the B_{4} Skeleton Obtained from eH Calculations for an Assumed Idealized Geometry ($\mathrm{B}-\mathrm{B}=1.65$ Å, $\mathrm{B}-\mathrm{H}=1.2$ Å)

no.	molecule	$\mathrm{B}_{\mathrm{S}}-\mathrm{B}_{\mathrm{S}}$	$\mathrm{B}_{\mathrm{S}}-\mathrm{B}_{\mathrm{L}}$	$\mathrm{B}_{\llcorner }-\mathrm{B}_{\mathrm{L}}$
1	$\mathrm{~B}_{4} \mathrm{H}_{4}$	0.514	0.820	-0.139
2	$\mathrm{~B}_{4} \mathrm{H}_{6}$	0.702	0.627	-0.129
3	$\mathrm{~B}_{4} \mathrm{H}_{10}{ }^{2+}$	0.364	0.332	-0.097
4	$\mathrm{~B}_{4} \mathrm{H}_{12}$	0.329	0.252	-0.089
5	$\mathrm{~B}_{4} \mathrm{H}_{8}$	0.556	0.446	-0.134

Table 2. Overlap Population between $\mathrm{B}_{\mathrm{S}}-\mathrm{B}_{\mathrm{S}}$ for the Skeletal MOs in $\mathrm{B}_{4} \mathrm{H}_{4}$ and $\mathrm{B}_{4} \mathrm{H}_{6}$

MO	Symm^{2}	$\mathrm{~B}_{4} \mathrm{H}_{4}$	$\mathrm{~B}_{4} \mathrm{H}_{6}$
	$\mathrm{~b}_{3 \mathrm{u}}$	0.194	0.194
	$\mathrm{~b}_{1 \mathrm{u}}$	0.114	0.138
	$\mathrm{~b}_{2 \mathrm{u}}$	-0.368°	-0.009
8	a_{g}	0.174	0.215
8	$\mathrm{~b}_{3 \mathrm{~g}}$	-0.159	-0.011

*Not filled in $\mathrm{B}_{4} \mathrm{H}_{4}$.

a

Figure 7. $\mathrm{b}_{3 \mathrm{~g}} \mathrm{MO}$ of the rhombus skeleton in (a) $\mathrm{B}_{4} \mathrm{H}_{4}$ and (b) $\mathrm{B}_{4} \mathrm{H}_{6}$.
antibonding in $b_{3 g}$ is substantially decreased. Figure 7 shows the shape of the $b_{3 g}$ in $\mathrm{B}_{4} \mathrm{H}_{4}$ and $\mathrm{B}_{4} \mathrm{H}_{6}$. What a difference! The incoming hydrogens induce extensive second order mixing with high-lying $\mathrm{b}_{3 g}$ orbitals, essentially removing the B_{S} contribution (and thus $B_{S}-B_{S}$ antibonding in this MO). There is an analogous effect in the $b_{2 u}$ orbital. The system experimentally isolated by Berndt and co-workers (Figure 1b) clearly shows the $B_{S}-B_{S}$ bond shortening implied by the OPs in Table 2-the observed $\mathrm{B}_{\mathrm{S}}-\mathrm{B}_{\mathrm{S}}$ separation is $1.52 \AA .{ }^{5}$

The Limits of Assigning MOs as $\mathbf{B}-\mathbf{H}$ or Framework Bonding. In the next step, we add an additional pair of hydrogens to each of the boron atoms of the longer diagonal $\left(\mathrm{B}_{\mathrm{L}}\right)$ of $\mathrm{B}_{4} \mathrm{H}_{6}$, so that the new hydrogens lie perpendicular to the plane of the $\mathrm{B}_{4} \mathrm{H}_{6}$ ring on either side. These extra hydrogen atoms are ideally suited to interact with the perpendicular π orbitals. The resultant $\mathrm{B}_{4} \mathrm{H}_{10}$ molecule shows a good HOMO-LUMO gap if it is a dication, as indicated in Figure 6. (Nevertheless, it is not a local minimum; appropriate substitutions may stabilize it.)

The four localized $\mathrm{B}-\mathrm{H}$ bonds formed in this step would transform as $a_{g}+b_{2 g}+b_{3 u}+b_{1 u}$. To find their equivalents, we have to take the stabilized $b_{2 g}$ (which was formerly empty in $\mathrm{B}_{4} \mathrm{H}_{6}$) plus the three levels that were considered framework orbitals in $\mathrm{B}_{4} \mathrm{H}_{6}$. If we assume a localized $2 \mathrm{c}-2 \mathrm{e}$ picture for these four $\mathrm{B}-\mathrm{H}$ bonds, there remain, in principle, no electrons exclusively for skeletal bonding. But the OP value of $B_{S}-B_{S}$ is $0.364, B_{L}-B_{L} 0.382$ (see Table 1).

Figure 8. Two MOs of diborane which are involved in three-center $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bonding.

Figure 9. Structure of the experimentally observed pyridine adduct of molecule 1b.

How can there be any $B-B$ bonding if there are no $B-B$ bonding orbitals left? Clearly, the conceptual separation of localized B-H bonding around the rhombus B_{4} ring fails at this point; a delocalized description is inevitable. An orbital-by-orbital analysis of the contributions to these overlap populations (Table 3) shows that some of the MOs which we have called $\mathrm{B}-\mathrm{H}$ bonding are also $\mathrm{B}-\mathrm{B}$ bonding. This is especially true for the a_{g} and $\mathrm{b}_{1 \mathrm{u}}$ orbitals. However, there is a general reduction of the overlap population values (Table 1) in the B_{4} framework of $\mathrm{B}_{4} \mathrm{H}_{10}{ }^{2+}$ compared to $\mathrm{B}_{4} \mathrm{H}_{6}$.

This situation $-\mathrm{B}-\mathrm{H}$ bonding orbitals that are also $\mathrm{B}-\mathrm{B}$ bondingis to be expected. Recall the classical three-center bonding picture in diborane. The two MOs involved in the three-center bonding are shown in Figure 8. It is clearly seen that even as they are $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bonding, they are also $B-B$ bonding. In the boranes, multicenter $B-B$ and $B-H$ bonding separations are never clean. This is what happens in $\mathrm{B}_{4} \mathrm{H}_{10}{ }^{2+}$, where the simple counting of framework orbitals eventually breaks down.

Base Adducts of $\mathbf{B}_{\mathbf{4}} \mathbf{H}_{\mathbf{6}}$. The experimentally isolated system with the $\mathrm{B}_{4} \mathrm{H}_{6}$ framework (Figure 1b) is reported to form an adduct with pyridine, at one of its B_{L} position, the pyridine coming in approximately perpendicular to the B_{4} plane (Figure 9). ${ }^{5}$

Though there are four positions where one or more pyridine molecules can-in principle-attach to the $\mathrm{B}_{4} \mathrm{H}_{6}$ skeleton, only a monoadduct at B_{L} is reported to be formed, even when treated with excess pyridine. What happens to the MOs on stepwise addition of

[^3]

Figure 10. Correlation of the skeletal $\mathrm{B}_{4}\left(D_{2 h}\right)$ MOs due to the stepwise addition of hydride ions from $\mathrm{B}_{4} \mathrm{H}_{6}$ to $\mathrm{B}_{4} \mathrm{H}_{10}{ }^{4-}$.

Lewis bases, here modeled by hydride ions $\left(\mathrm{H}^{-}\right)$, is illustrated in Figure 10 for addition at B_{L}. The full $D_{2 h}$ symmetry is lowered as one adds bases and is restored only at $\mathrm{B}_{4} \mathrm{H}_{10}{ }^{4-}$.

The general effect is of lowering the energy of the $b_{2 g}$ and $b_{3 u}$ orbitals. But look at where the biggest electron gap is found! Adding one hydride ion (a model for pyridine) at a B_{L} leads to a nice gap for $\mathrm{B}_{4} \mathrm{H}_{7}{ }^{1-}$ (a model for $\mathrm{B}_{4} \mathrm{H}_{6}$ (pyridine)). Adding two hydrides, the gap would be large not for $\mathrm{B}_{4} \mathrm{H}_{8}{ }^{2-}$, but for the neutral $\mathrm{B}_{4} \mathrm{H}_{8}$, a model for $\mathrm{B}_{4} \mathrm{H}_{6}{ }^{-}$ (pyridine) 2^{2+}. The same situation prevails on the addition of three and four bases. This explains why only a single pyridine is observed to add to the compound (Figure 1b) made by Berndt and co-workers ${ }^{5}$ (Figure 9), which is related to $\mathrm{B}_{4} \mathrm{H}_{6}$.

We also studied addition at B_{S}. The acceptor orbital in this case is the $\mathrm{b}_{1 \mathrm{~g}}$. The results are not shown in detail here, but what happens is that one H^{-}stabilizes the $\mathrm{b}_{1 \mathrm{~g}}$ somewhat, so it comes a little below $\mathrm{b}_{2 \mathrm{~g}}$. The resulting gap is small. A second base stabilizes $b_{1 g}$ further, making a large gap for $\mathrm{B}_{4} \mathrm{H}_{8}$ neutral, which would correspond not to $\mathrm{B}_{4} \mathrm{H}_{6}$ (pyridine) $)_{2}$ but to a dication. Perhaps this species can be made.

In the next step, we add two more hydrogen atoms to the $\mathrm{B}_{4} \mathrm{H}_{10}$ system, to model the bonding environment of Si_{4} chains in $\beta-\mathrm{SiB}_{3}$ (Figure 2b). The MOs of $\mathrm{B}_{4} \mathrm{H}_{12}$ are shown in the last column of Figure 6. Now there are four hydrogens on each side of the B_{4} plane, bonded to all the four boron atoms. This results in the stabilization of all the π-MOs of the B_{4} ring, of which two were initially unfilled ($\mathrm{b}_{1 \mathrm{~g}}$ and $\mathrm{b}_{3 \mathrm{u}}$). Four more electrons are required to reach a good HOMO-LUMO gap; only two come with the hydrogens, so one needs to add two more electrons $\left(\mathrm{B}_{4} \mathrm{H}_{10}{ }^{2+}+2 \mathrm{H}+2 \mathrm{e}^{-}\right)$. The all-bonding radial $\mathrm{MO}\left(\mathrm{a}_{\mathrm{g}}\right)$ is destabilized since the hydrogens connected to boron atoms of the shorter diagonal $\left(B_{S}\right)$ are moved away from the B_{4} plane, but it still lies well within the bonding region.

Substitution in the $\mathbf{B}_{\mathbf{4}} \mathbf{H}_{\mathbf{8}}$ System. Here we consider the substituted $\mathrm{B}_{4} \mathrm{H}_{8}$ system, realized in the slightly puckered structure of $\mathrm{B}_{4}\left(\mathrm{BF}_{2}\right)_{4} \mathrm{~F}_{4}$ (Figure 1c). We begin by studying the nature of MO interactions
between the planar B_{4} ring and eight hydrogens in an idealized $\left(D_{2 h}\right)$ environment (Figure 11); the resulting $\mathrm{B}_{4} \mathrm{H}_{8}$ is a first model for $\mathrm{B}_{4^{-}}$ $\left(\mathrm{BF}_{2}\right)_{4} \mathrm{~F}_{4}$.

Since all the hydrogen atoms are positioned either above or below the plane of the B_{4} ring, all the p_{π} MOs of the B_{4} skeleton are stabilized. Even the most antibonding $\pi \mathrm{MO}\left(\mathrm{b}_{3 \mathrm{u}}\right)$ of the ring is filled, while the all-bonding tangential MO $\left(b_{3 g}\right)$ is empty. Filling of all π orbitals essentially cancels out all the stabilization from the p_{π} set to the rhombus B_{4} skeleton. The HOMO-LUMO gap for $\mathrm{B}_{4} \mathrm{H}_{8}$ is comparatively smaller than the gap between LUMO and LUMO +1 . The stabilization of rhomboid B_{4} in this ligand environment might be achieved either by (a) stabilizing $b_{3 g}$, and filling it by adding two more electrons or (b) raising $b_{3 g}$ in energy to increase the HOMO-LUMO gap of the neutral species. Our attempts to stabilize the all-bonding tangential MO $\mathrm{b}_{3 \mathrm{~g}}$ with various substituents at B_{L} such as $-\mathrm{BH}_{2},-\mathrm{BF}_{2}$, etc., proved futile-such substituents brought in additional levels in the frontier region, reducing the HOMO-LUMO gap. However, destabilization of the $b_{3 g}$ by π-donating substituents such as fluorine at B_{L} increases the HOMO-LUMO significantly, as shown in the third column of Figure 11.

DFT calculations on $\mathrm{B}_{4} \mathrm{~F}_{4} \mathrm{H}_{4}$ show two small imaginary frequencies for the $D_{2 h}$ structure; the energy minimum corresponds to a slightly puckered structure (dihedral angle 156°) with $C_{2 v}$ symmetry, about 1.2 kcal lower in energy than the planar form (Figure 12). The origin of this puckering is not clear; the energetic preference is anyway small. The long-known $\mathrm{B}_{8} \mathrm{~F}_{12},{ }^{29}$ whose structure was solved recently ${ }^{6}$ (Figure 1c) has a similar skeleton to our model $\mathrm{B}_{4} \mathrm{~F}_{4} \mathrm{H}_{4}$ (where the hydrogen atoms are replaced by $-\mathrm{BF}_{2}$ groups) but has a low symmetry $\left(C_{1}\right)$ geometry, possibly due to the flat potential surface arising from the

[^4]

Figure 11. Interaction of MOs between the B_{4} ring $\left(D_{2 h}\right)$ with eight hydrogens in the $D_{2 h}$ symmetric environment (middle). The last column shows the effect of substituting hydrogens by fluorines at B_{L}. MOs of dissimilar symmetries are shown in distinct colors.

Figure 12. DFT-optimized geometries of planar $\left(D_{2 h}\right)$ and puckered $\left(C_{2 v}\right)$ $\mathrm{B}_{4} \mathrm{H}_{4} \mathrm{~F}_{4}$.
loose torsional modes of the $-\mathrm{BF}_{2}$ substituents. An eH calculation on the experimentally observed geometry of $\mathrm{B}_{8} \mathrm{H}_{12}$ gives a nice gap of 2.59 eV .

The MOs Essential for Rhomboid Bonding. The OP values within the B_{4} ring decrease steadily with the addition of hydrogens, with the exception of $\mathrm{B}_{4} \mathrm{H}_{6}$ (Table 3). In our level evolution diagram (Figure 5), all these systems have four occupied MOs in common. These are the all-bonding combination of the radial $\left(\mathrm{a}_{\mathrm{g}}\right)$, tangential $\mathrm{p}_{\mathrm{t}}\left(\mathrm{b}_{3 \mathrm{~g}}\right)$, and $\pi p_{p}\left(b_{3 u}\right)$ and $b_{1 u}$. The contribution of these four MOs to the net overlap population of the two $B-B$ bonds is given in Table 4. Though we have sometimes labeled the MOs in this set as $\mathrm{B}-\mathrm{B}$ bonding and sometimes as $\mathrm{B}-\mathrm{H}$ bonding orbitals, it is clear from their contributions that these MOs are responsible for well over half of $B_{L}-B_{S}$ and $B_{S}-$ B_{S} bonding. We take this as an indication that the occupation of just these four MOs is required for a stable rhomboid ring.

A Rhomboid \mathbf{B}_{4} Unit as Part of a Macropolyhedral Borane. We now turn to the systems where a rhomboid B_{4} ring fuses two polyhedral units, as in $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ (Figure 1d). To count electrons in these polyhedral systems, the special electronic requirement of rhombo- $\mathrm{B}_{4}\left(D_{2 h}\right)$ needs to be related to the usual and successful formalism of polyhedral electron counting rules. The $\mathrm{B}_{4} \mathrm{H}_{4}$ skeleton can be reached from closo$\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ by the removal of two capping $\mathrm{B}-\mathrm{H}$ groups followed by a rhombic distortion, as shown in Figure 13, left.

From Wade's rules, ${ }^{10}$ the electronic requirement for $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ is seven skeletal electron pairs (in addition to six $\mathrm{B}-\mathrm{H}$ bonds). A square planar arachno $-\mathrm{B}_{4} \mathrm{H}_{4}{ }^{6-}$ structure is formed from $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ by removing two $\mathrm{B}-\mathrm{H}$

Table 3. Overlap Populations between Specified Atoms in the Frontier MOs of $\mathrm{B}_{4} \mathrm{H}_{10}{ }^{2+}$

MO	Symmetry	$\mathrm{B}_{\mathrm{S}}-\mathrm{B}_{\mathrm{S}}$	$\mathrm{B}_{\mathrm{s}}-\mathrm{B}_{\mathrm{L}}$	$\mathrm{B}_{\mathrm{s}}-\mathrm{H}$	$\mathrm{B}_{\mathrm{L}}-\mathrm{H}_{\text {eq }}$	$\mathrm{B}_{\mathrm{L}}-\mathrm{H}_{\mathrm{ax}}$
∞	$\mathrm{b}_{1 \mathrm{u}}$	0.046	0.066	0.000	0.086	0.025
	$\mathrm{b}_{2 \mathrm{u}}$	-0.009	-0.028	0.103	0.154	0.000
	a_{g}	0.172	0.069	0.154	0.028	0.003
	$\mathrm{b}_{3 \mathrm{~g}}$	-0.011	0.028	0.000	0.161	0.000
	$\mathrm{b}_{2 \mathrm{~g}}$	0.000	0.000	0.000	0.000	0.205
	$\mathrm{b}_{3 \mathrm{u}}$	0.013	0.027	0.000	0.000	0.155

groups leaving the electrons they used in the skeletal bonding behind, i.e., $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-} \rightarrow 2(\mathrm{BH})^{2+}+\mathrm{B}_{4} \mathrm{H}_{4}$. $^{6-}$
$\mathrm{B}_{4} \mathrm{H}_{4}{ }^{6-}$ is also isoelectronic with cyclobutadiene dianion $\mathrm{C}_{4} \mathrm{H}_{4}{ }^{2-}$ $\left(D_{4 h}\right)$. As we have seen earlier, the distortion of square $\mathrm{B}_{4} \mathrm{H}_{4}{ }^{6-}$ to a rhombus leads to a good gap for a rhomboidal system (rhombo- B_{4}) with six electrons less (see Figure 3). So the rhombo- $\mathrm{B}_{4} \mathrm{H}_{4}-$ when considered as a distorted arachno system derived from closo- $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}$ deviates from Wade's rule by three electron pairs. We can take this as an adjustment of electron counting rules for macropolyhedral systems containing a rhombo- B_{4} unit; we apply this "correction" in the sequel every time we encounter such a unit.

Figure 13. Schematic deduction of skeletal electron pair counting for $\mathrm{B}_{4} \mathrm{H}_{4}\left(D_{2 h}\right)$.

Table 4. Contribution from the Four Skeletal MOs $\left(a_{1 g}+b_{3 g}+b_{3 u}\right.$ $+b_{14}$) to the Net B-B Overlap Populations in Different Exocyclic Environments of the B_{4} Ring

	$\mathrm{B}_{\mathrm{s}}-\mathrm{B}_{\mathrm{s}}$ overlap population			$\mathrm{B}_{s}-\mathrm{B}_{\llcorner }$overlap population	
molecule	$\mathrm{a}_{19}+\mathrm{b}_{39}+\mathrm{b}_{3 \mathrm{u}}+\mathrm{b}_{1 \mathrm{u}}$	net		$\mathrm{a}_{19}+\mathrm{b}_{39}+\mathrm{b}_{3 \mathrm{u}}+\mathrm{b}_{14}$	net
$\mathrm{B}_{4} \mathrm{H}_{4}$	0.323	0.514		0.573	0.820
$\mathrm{~B}_{4} \mathrm{H}_{6}$	0.536	0.702		0.437	0.627
$\mathrm{~B}_{4} \mathrm{H}_{10}{ }^{2+}$	0.220	0.364		0.190	0.332
$\mathrm{~B}_{4} \mathrm{H}_{12}$	0.170	0.329		0.207	0.252

There is an alternative formulation that was suggested to us by Walter Siebert. This is to consider the rhombo- B_{4} structural element as a "hyper-closo" 2 n electron species instead of "distorted arachno". We see several problems in this formulation: (1) the term "closo" is traditionally understood as a skeleton that is homeomorphic to a sphere. ${ }^{10}$ Hence, the four vertex closo system is tetrahedral not rhomboid. (2) The hypo-closo- B_{4} notation will raise potential confusion with the tetrahedral B_{4} skeleton that is observed in molecules such as $\mathrm{B}_{4} \mathrm{Cl}_{4}, \mathrm{~B}_{4}(t-\mathrm{Bu})_{4}$, etc., which are also, unfortunately, 2 n electron species. For some unknown reasons, these molecules are sometimes referred to as hyper-closo, ${ }^{30}$ meaning super-closo, even for systems such as B_{8} Cl_{8} and $\mathrm{B}_{9} \mathrm{Cl}_{9}$, though electronically these systems are hypo rather than hyper. It is enough to make a chemist go into advertising! (3) The term "hypo" also has the potential to be confused with "hypho", which refers to the electron-rich polyhedra that have three missing vertices $\left(2 n+6\right.$ species). ${ }^{31}$ (4) rhombo- B_{4}, though experimentally known as a subsystem from the 1960s, has so far never been referred to as either hypo or closo.

To summarize, though derivation of electron count for rhombo- B_{4} as hypo-closo 2 n electron species looks easier, we think it is inconsistent with the definition of closo. And this terminology is confusing, in relation to the molecules having tetrahedral- B_{4} units, which are also 2 n electron species.

Nomenclature in this field clearly engenders debate. So Russell Grimes, long active in this field, in a comment on this section of the paper says, "I would question whether Wade's rule is really applicable to planar- $\mathrm{B}_{4} \mathrm{H}_{4}$, because it is not a fragment of a closo-polyhedron (deltahedron). In other words, when you distort square $\mathrm{B}_{4} \mathrm{H}_{4}$ to rhombo$\mathrm{B}_{4} \mathrm{H}_{4}$ you are leaving Wade's country behind. In contrast, bent $\mathrm{B}_{4} \mathrm{H}_{4}$ (an octahedron minus two adjacent vertices) is a Wade structure-as in $\mathrm{B}_{4} \mathrm{H}_{10}$ which has six additional electrons (from the six added hydrogen atoms) and in agreement with Wade's rules." We would say that rhombo- B_{4} unit leaves Wade's country, but still prefers to live in the neighborhood.

According to a recently formulated and quite general electroncounting scheme, a macropolyhedral borane having n vertices and m

[^5]
b

Figure 14. Structure of the $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ (a) with a rhombo- B_{4} ring flanked between two B_{10} polyhedra and (b) its photoisomer ${ }^{-}$.
cages requires $n+m$ electron pairs for optimal bonding. ${ }^{32 \mathrm{a}}$ This scheme reduces to Wade's rule when $m=1$, and has to be augmented with an additional " o " parameter which counts the number of "single-vertex sharings" in the skeleton, if available (mno rule). ${ }^{32 \mathrm{~b}}$ For electron counting in macropolyhedral systems containing a rhomboid B_{4} skeleton, we have two options: First we may consider the rhombo- B_{4} framework as a separate cage derived from an arachno skeleton; in that case, we have to subtract three electron pairs, as argued above. For example, in the case of $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ (Figure 14a), the total number of vertices $n=20$ and the number of cages $m=3$ (including the rhomboB_{4} unit). The two missing capping $\mathrm{B}-\mathrm{H}$ groups of the B_{4} unit (making it arachno instead of closo) require the addition of two more electron pairs (see Figure 13, left). Hence by the $n+m$ rule, we need $n+m$ +2 , i.e., 25 skeletal electron pairs, were the B_{4} unit square planar. But, as we discussed above, the rhomboidal structural unit necessitates that we subtract three electron pairs. This results in a total of 22 electron pairs for skeletal bonding. In the molecule, there are $18 \mathrm{~B}-\mathrm{H}$ group each providing one electron pair and the remaining two bare boron atoms together give three electron pairs for skeletal bonding, leading to the net -2 charge.

Alternatively, if we leave out the B_{4} unit while counting the number of cages m, the total number of required electron pairs reduces to $n+$ m, i.e, for $\mathrm{B}_{20} \mathrm{H}_{18} 8^{2-}$, taking $n=20$ and $m=2$ gives the required 22 electron pairs directly. Note that this method of electron counting formally leaves no electrons to hold the two polyhedra together in the rhombus. As we discussed above, this formal trap is a consequence of a simplistic division of framework $B-B$ and $B-H$ bonding. Actually, some $\mathrm{B}-\mathrm{H}$ orbitals are also $\mathrm{B}-\mathrm{B}$ bonding. The two approaches to electron counting are seen to be consistent. As we proceed to more complicated systems, the second method (leaving out rhombo- B_{4} units in counting cages) has proven easier in practice. Hereafter, we leave out the rhombo- B_{4} cages while counting m in the macropolyhedral system and apply the $n+m$ (or $m n o$) rule directly.

The $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ story has an interesting side to it that a reviewer has brought to our attention. This molecule is converted on photolysis to

[^6]

Figure 15. Structure of $\mathrm{Na}_{3} \mathrm{~B}_{20}$.
an isomer shown in Figure 14b. ${ }^{33}$ In this isomer, one has a "normal" structure of two B_{10} polyhedra linked by two $B-H-B$ three-center two-electron bridges. Using this reasoning, the rhomboidal connection of the two B_{10} units in structure 14a can also be viewed as being made up of two $3 \mathrm{c}-2 \mathrm{e}$ bonds. The mechanism of interconversion between these isomers is not simple, as it involves not just the movement of two hydrogen atoms to the bridging positions, but a positional shift in the boron polyhedra.

In concluding our discussion of discrete molecular systems, we should mention that we have not looked at rhomboid systems with bridging hydrogens. These deserve discussion, but even though they are common in borane chemistry in general, except for the $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ isomer, they have not been seen for the rhomboid geometry.

Rhomboid Connections in Extended Systems: $\mathbf{N a}_{\mathbf{3}} \mathbf{B}_{\mathbf{2 0}} \cdot \mathrm{Na}_{3} \mathrm{~B}_{20}$ is a recently characterized alkali metal boride, ${ }^{7}$ found in a structural refinement of a sodium boride that was incorrectly assigned a composition of NaB_{6} earlier. ${ }^{34}$ The orthorhombic Cmmm structure was solved by X-ray powder diffraction and neutron diffraction. The structure has layers of alternating octahedral B_{6} units and trigonalbipyramidal B_{7} units, seen from a "top" perspective in Figure 15. While the B_{6} units are connected to the adjacent polyhedra by regular two center bonds, the adjacent B_{7} units are fused by the now familiar rhombo- B_{4} unit, similar to the fusion of the B_{10} units in the molecular $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$. In forming infinite chains of $\mathrm{B}_{7} / \mathrm{B}_{4}$ units, the topological arrangement is such that the adjacent B_{4} units share a unique single vertex. $\mathrm{Na}_{3} \mathrm{~B}_{20}$ is reported to be an insulator. ${ }^{7 \mathrm{~b}}$

The orthorhombic unit cell of $\mathrm{Na}_{3} \mathrm{~B}_{20}(Z=2)$ can be conceptually divided into $(\mathrm{Na})_{6}\left(\mathrm{~B}_{6}\right)_{2}\left(\mathrm{~B}_{7}\right)_{4}$ units for the purpose of electron counting. While the two electron requirement of B_{6} can be directly deduced from Wade's rule, the B_{7} units which are fused by rhombo $-\mathrm{B}_{4}$ units require the application of the mno rule. Each B_{7} chain has two B_{7} and two B_{4} units in the unit cell. Hence $n=14, m=2$, and $o=2$, which gives a total of 18 electron pairs per chain or an anticipated count of nine electron pairs per B_{7} unit. For every repeat unit of the B_{7} chain, there are four boron atoms with exo-2c-2e bonds connecting the other polyhedra. These boron atoms formally contribute one electron pair each to skeletal electron count. The remaining three boron atoms of the B_{7} unit have no exo-2c-2e bonds, and they together contribute 4.5 electron pairs (3×3 valence electrons) to skeletal bonding. We thus have a situation where a B_{7} unit has 17 electrons (8.5 electron pairs) but by the mno rule requires 18 electrons for stability. The B_{7} unit should then acquire an extra electron from the rest of the lattice for stability, as $B_{7}{ }^{1-}$. The charge assignment of individual units in $\mathrm{Na}_{3} \mathrm{~B}_{20}$

[^7]

Figure 16. Band structure of $\mathrm{Na}_{3} \mathrm{~B}_{20}$ from eH calculations.
that polyhedral electron counting then leads us to is $\left(\mathrm{Na}^{+}\right)_{6}\left(\mathrm{~B}_{6}{ }^{2-}\right)_{2}$ $\left(\mathrm{B}_{7}{ }^{1-}\right)_{4}$, which gives-by this electron-counting scheme-a net -2 charge per unit cell or -1 charge per formula unit. We would conclude from this formalism that $\mathrm{Na}_{3} \mathrm{~B}_{20}$ (neutral) is electron deficient, not optimally bonded.

To verify this additional requirement for electrons, extended Hückel calculations including the Na atoms were carried out for the orthorhombic cell of $\mathrm{Na}_{3} \mathrm{~B}_{20}$, where $Z=2$. The band structure calculation indicates metallic behavior for the neutral species but shows a finite band gap for a -2 charge, confirming our electron-counting ideas (Figure 16). Contributions to the projected density of states of boron atoms in the B_{6} and B_{7} polyhedra (Figure $17 a, b$) show that bands crossing at the Fermi level of the neutral species are predominantly from the B_{7} polyhedra.

To confirm the validity of mno rule for this unprecedented single vertex sharing of B_{4} units, we performed molecular DFT calculations on some discrete molecular borane chains containing two, three, and four B_{7} units (Figure 18). For the dimer, $n=14$ and $m=2$, thus requiring 16 electron pairs by the $n+m$ rule. The $12 \mathrm{~B}-\mathrm{H}$ groups provide 12 electron pairs and two shared boron atoms give three electron pairs, resulting in a total of 15 electron pairs. So this molecule needs two more electrons to satisfy the $n+m$ rule, just like the molecular $\mathrm{B}_{20} \mathrm{H}_{18}{ }^{2-}$ discussed above.

Geometry optimization followed by frequency calculations at the B3LYP/6-31G* level of theory shows that the dimer $\mathrm{B}_{14} \mathrm{H}_{12}{ }^{2-}$ is a minimum on the potential energy surface with a $2-$ charge and reasonable $B-B$ distances. A neutral $B_{14} \mathrm{H}_{12}$ moves away from the idealized geometry. For the trimer, $n=21, m=3$, and $o=1$, so by the mno rule, the molecule requires 25 electron pairs for skeletal bonding. The $16 \mathrm{~B}-\mathrm{H}$ groups and five shared boron atoms together contribute only 23.5 electron pairs, three electrons short of the mno rule count. Similar counting gives a $4-$ charge for the tetramer ($n=$ $28, m=4, o=2$). All these molecules are minima with respective charges calculated by the mno rule, at the same level of theory.

EH band calculations on infinite one-dimensional chains of $\mathrm{B}_{7} \mathrm{H}_{4}$ (Figure 2a) show a band gap (Figure 19) of about 2 eV when provided with a -1 charge per B_{7} unit, as expected from the argument above. Here, the $\mathrm{B}-\mathrm{B}$ distances are kept at $1.75 \AA$ and $\mathrm{B}-\mathrm{H}$ distances are kept at $1.2 \AA$, typical bond distances observed for polyhedral boranes. The topmost band of the 1D-chain is quite steep, starting at -8.6 eV at Γ and descending to -10 eV at X , spanning a bandwidth of around

Figure 17. Projected density of states for the atoms of (a) B_{6} and (b) B_{7} polyhedra in $N_{3} B_{20}$.

c. $\mathrm{B}_{28} \mathrm{H}_{20}{ }^{4-}$

Figure 18. Optimized structures of discrete molecules having B_{7} polyhedra linked with rhombic B_{4} units at the B3LYP/6-31G* level of theory.
1.4 eV . This indicates substantial inter-unit cell interaction in the frontier MOs of this polymer.

Returning to $\mathrm{Na}_{3} \mathrm{~B}_{20}$, we studied the electron deficiency of the neutral structure with DFT calculations, optimizing the primitive unit cell (Z $=1)$ with $+1,0$, and -1 charges. We used a plane-wave cutoff energy of 400 eV with a k-point separation of about $0.04 \AA^{-1}(9 \times 9 \times 12$ mesh). Our repeated attempts to obtain the converged geometry for neutral and +1 charged unit cell by using increased cutoff energy, and k-point sampling proved futile. However, the system with a -1 charge converged rapidly. The optimized primitive unit cell of $\mathrm{Na}_{3} \mathrm{~B}_{20}{ }^{-1}(a=$ $b=9.771 \AA, c=4.090 \AA ; a=b=90.0^{\circ}, \gamma=146.43^{\circ}$; cell volume $=215.919 \AA^{3}$) is in reasonable agreement with the experimentally reported unit cell parameters $(a=b=9.757 \AA, c=4.14 \AA, \alpha=\beta=$ $90.0^{\circ}, \gamma=146.09^{\circ}$, cell volume $=220.347 \AA^{3}$) from neutron diffraction. The band structure of $\mathrm{Na}_{3} \mathrm{~B}_{20}$ obtained from eH calculations using the DFT-optimized geometry is given along with the DFT bands in Figure 20. The band structures appear similar, except that the band gap of ~ 1 eV obtained from eH calculations vanishes in the DFT band structure, which shows a zero band gap, near special point $Y(-0.5,0.5,0)$ in the Brillouin zone.

We have a problem: (1) electron counting and our calculations point to $\mathrm{Na}_{3} \mathrm{~B}_{20}$ needing more electrons, and (2) it is hard to see how $\mathrm{Na}_{3} \mathrm{~B}_{20}$ with an odd number of electrons in a primitive unit cell (as found) can be insulating. Insulating behavior due to localization of states (a Mott transition) seems to be improbable, due to the steep nature of the bands from B_{7} chains in the frontier region. One can think of two possible

Figure 19. Band structure of one-dimensional chain of $\left(\mathrm{B}_{7} \mathrm{H}_{4}{ }^{-1}\right)_{n}$.
mechanisms by which the system can get its extra electrons: (a) partial occupancies or (b) interstitial atoms. Sodium vacancies, i.e., partial occupancy of sodium sites, moves the electron count in the wrong direction. Even partial occupancy of boron sites in this system will increase the electron deficiency, as it will give rise to partially open "nido" structures, which demand more electrons. The possibility of having interstitial Na^{+}ions is also unlikely, due to the compact packing. The heptagonal channels in the boride network already contain sodium atoms with nearest $\mathrm{Na}-\mathrm{Na}$ contacts $\sim 4.14 \AA$.

We suggest that there are in this structure some interstitial boron atoms, capping the faces of the polyhedra. Such capping boron atoms are known to provide additional electrons to the framework without modifying the electron count, in structures such as β-rhombohedral

Figure 20. Band structure of the optimized $\mathrm{Na}_{3} \mathrm{~B}_{20}{ }^{-1}$ from (a) eH and (b) DFT calculations.

Figure 21. Structure of $\beta-\mathrm{SiB}_{3}$: (a) unit cell, (b) alternative view showing Si_{4} chains, (c) coordination environment of Si_{4} chains.
boron. The mechanism has been described by Mingos et al. as the "capping principle" ${ }^{35}$ Since there are many three-membered ring faces available in the unit cell, the capping atoms may be randomly distributed in different faces. This would make their experimental detection by diffraction methods difficult. In summary, further structural investigation of this phase is indicated; the electronics argue strongly against a simple $\mathrm{Na}_{3} \mathrm{~B}_{20}$ stoichiometry.

A reviewer has suggested that there might be a carbon substituting the boron leading to the composition $\mathrm{Na}_{3} \mathrm{~B}{ }_{19} \mathrm{C}$. However, the analytical data in the original work ${ }^{7 \mathrm{~b}}$ seems to exclude the presence of any other atom other than boron and sodium.

[^8]A Silicon Realization of the Rhomboid Framework in $\boldsymbol{\beta}$ - SiB_{3}. The electron-deficient rhomboid skeleton is not restricted to boron. Silicon, which is diagonally related to boron, also exhibits this unit in the recently reported $\beta-\mathrm{SiB}_{3}$ structure. ${ }^{8}$ Among the known binary phases of silicon and boron, $\beta-\mathrm{SiB}_{3}$ (space group Imma) is the only phase that is crystallographically well-ordered without any partial occupancies or vacancies. It was well characterized using single-crystal X-ray diffraction studies. Two views of the $\beta-\mathrm{SiB}_{3}$ structure, along with the extracted coordination environment of the Si_{4} chains in the structure are given in Figure 21.

The structure of $\beta-\mathrm{SiB}_{3}$ consists of layers of B_{12} units linked together, and a layer of interconnected rhombic Si_{4} units forming sinuous chains as shown in Figure 21. These infinite Si_{4} chains connect to the remaining

Figure 22. Band structure of $\beta-\mathrm{SiB}_{3}$ from (a) extended Hückel and (b) DFT calculations.
dangling bonds of the B_{12} polyhedra. Both experimental measurements and DFT band structure calculations characterize the compound as a semiconductor with a definite band-gap. ${ }^{8}$ The bonding in $\beta-\mathrm{SiB}_{3}$ remains unexplored. The band structure obtained from eH calculation for $\beta-\mathrm{SiB}_{3}$ is given in Figure 22a.

For calibrating the parameters employed in eH calculations, we also performed a DFT optimization of SiB_{3} using a plane wave cutoff energy of 400 eV with a $5 \times 5 \times 5$ k-point set. The band structure obtained from DFT calculations is given alongside the eH bands as Figure 21b. There is a direct band-gap of $\sim 1.5 \mathrm{eV}$ observed in both calculations, in good agreement with the earlier reports.

For the purpose of electron counting, we divide the orthorhombic unit cell of $\beta-\mathrm{SiB}_{3}(Z=16)$ into $\left(\mathrm{B}_{12}\right)_{4}\left(\mathrm{Si}_{4}\right)_{4}$. Since each B_{12} unit requires two electrons, the Si_{4} unit has to be assigned a +2 charge. ${ }^{8}$ We can relate the environment of the Si_{4} units to the neutral rhomboidal $\mathrm{B}_{4} \mathrm{H}_{12}$ model discussed earlier. Each Si_{4} unit differs somewhat from $\mathrm{B}_{4} \mathrm{H}_{12}$, as two of the four axial hydrogen atoms are missing on one side. So the appropriate model will be the doubly deprotonated $\mathrm{B}_{4} \mathrm{H}_{10}{ }^{2-}$, which is isoelectronic to $\mathrm{Si}_{4} \mathrm{H}_{10}{ }^{2+}$. To confirm the electronic requirement, we carried out DFT calculations on the discrete $\mathrm{Si}_{4} \mathrm{H}_{10}{ }^{2-}$ molecule with a $C_{2 v}$ symmetric constraint. Frequency calculations indicate that $\mathrm{Si}_{4} \mathrm{H}_{10}{ }^{2+}$ $\left(C_{2 v}\right)$ is not a minimum on its potential energy surface; the axial hydrogens at the longer diagonal are trying to move toward the bridging positions, breaking the symmetry. The replacement of axial hydrogens with $-\mathrm{SiH}_{3}$ groups will simulate an ideal model for the environment around Si_{4} units in $\beta-\mathrm{SiB}_{3}$, but the loose torsional modes of $-\mathrm{SiH}_{3}$ in practice will complicate the computations, due to the flat potential energy surface they engender. Hence, we decided to replace the two axial hydrogens with fluorine atoms. The resulting $\mathrm{Si}_{4} \mathrm{H}_{8} \mathrm{~F}_{2}{ }^{2+}$ (Figure $23)$ is a minimum. The bond length variation is more pronounced in

Figure 23. The geometry of (a) optimized $\mathrm{Si}_{4} \mathrm{H}_{8} \mathrm{~F}_{2}{ }^{2+}$ and (b) $\left(\mathrm{Si}_{4}{ }^{2+}\right)_{n}$ unit in $\beta-\mathrm{SiB}_{3}$.
$\mathrm{Si}_{4} \mathrm{H}_{8} \mathrm{~F}_{2}{ }^{2+}$ compared to the observed distances in $\beta-\mathrm{SiB}_{3}$, presumably due to the higher electronegativity of fluorine.

Since the eH method gives a band structure very similar to that of the quantitatively more accurate DFT calculations on $\beta-\mathrm{SiB}_{3}$, it is easy to test the effect of chain formation in Si_{4} units on its charge. Figure 24 shows the band structure and density of states for the onedimensional $\mathrm{Si}_{4} \mathrm{H}_{8}$ polymer with a $2+$ charge per unit cell. There is a substantial band gap $(\sim 5 \mathrm{eV})$, confirming that the linking of $\mathrm{Si}_{4}{ }^{2+}$ units does not alter the charge requirements.

The bonding in $\beta-\mathrm{SiB}_{3}$ thus can be conveniently interpreted as built up from $\mathrm{B}_{12}{ }^{2-}$ polyhedra and novel nonclassical $\mathrm{Si}_{4}{ }^{2+}$ units, analogous to boron rhomboids.

Conclusion

The electronic requirements of systems exhibiting the rhomboid geometry, quite diverse, are explained using molecular orbital theory. There are four MOs which are primarily responsible for skeletal bonding. A bridge is built between molecular rhombo- B_{4} systems and polyhedral extended structures with an analogous building block. We think the recently

Figure 24. (a) Band structure and (b) density of states of 1-D $\mathrm{Si}_{4} \mathrm{H}_{8}{ }^{2+}$ chains.
reported structure of $\mathrm{Na}_{3} \mathrm{~B}_{20}$ (which contains the rhombo- B_{4} units) is electron deficient and requires one more electron per formula unit to explain the observed insulating behavior; we suggest there may be interstitial boron atoms in this structure. We have also related the bonding in $\beta-\mathrm{SiB}_{3}$, which contains rhomboid Si_{4} units, to that of molecular and extended rhomboB_{4} structures.

Acknowledgment. Our work was generously supported by the National Science Foundation through research grant CHE-

0204841. We are grateful to Armin Berndt, Russell Grimes, Walter Siebert, and the reviewers for their comments on our paper.

Supporting Information Available: Cartesian coordinates for relevant molecules optimized at B3LYP/6-31G* level and fractional coordinates for relevant extended structures optimized with DFT based LDA/PAW calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

JA0467420

[^0]: (1) (a) Brown, I. D.; Crump, D. B. J. Inorg. Chem. 1971, 10, 2319-2323. (b) Couch, T. W.; Lokken, D. A.; Corbett, J. D. Inorg. Chem. 1972, 11, 357362. (c) Passmore, J.; Sutherland, G. White, P. S. J. Chem. Soc., Chem. Commun. 1980, 330-331. (d) Passmore, J.; Sutherland, G. White, P. S. Inorg. Chem. 1982, 21, 2717-2723. (e) Nenajdenko, V. G.; Shevchenko, N. E.; Balenkova, E. S.; Alabugin, I. V. Chem. Rev. 2003, 103, 229-282. (f) Kraus, F.; Aschenbrenner, J. C.; Korber, N. Angew. Chem., Int. Ed. 2003, 42, 4030-4033.
 (2) (b) Seitz, G.; Imming, P. Chem. Rev. 1992, 92, 1227-1260.
 (3) Both $\mathrm{C}_{4} \mathrm{H}_{4}{ }^{2+}$ and $\mathrm{C}_{4} \mathrm{H}_{4}{ }^{2-}$, which are aromatic by Huckel's $4 n+2$ rule, are not a minima in $D_{4 h}$ symmetry. (a) Clark, T.; Wilhelm, T.; Schleyer, P. v. R. Tetrahedron Lett. 1982, 23, 3547-3550. (b) Hess, B. A., Jr.; Ewig, C. S.; Schaad, L, J. J. Org. Chem. 1985, 50, 5869-5871 (Correction 1986, 51, 4326).
 (4) Maier, A.; Hofmann, M.; Pritzkow, H.; Siebert, W. Angew. Chem., Int Ed. 2002, 41, 1529-1532. (b) Präsang, C.; Hofmann, M.; Geiseler, G.; Massa, W.; Berndt, A. Angew. Chem., Int. Ed. 2003, 42, 1049-1052. (c) Mesbah, W.; Präsang, C.; Hofmann, M.; Geiseler, G.; Massa, W.; Berndt, A. Angew. Chem., Int. Ed. 2003, 42, 1717-1719.
 (5) (a) Präsang, C.; Hofmann, M.; Geiseler, G.; Massa, W.; Berndt, A. Angew. Chem., Int. Ed. 2002, 41, 1526-1529. (b) Präsang, C.; Mlodzinowska, A.; Sahin, Y.; Hofmann, M.; Geiseler, G.; Massa, W.; Berndt, A. Angew. Chem., Int. Ed. 2002, 41, 3380-3382. (c) Präsang, C.; Mlodzianowska, A.; Geiseler, G.; Massa, W.; Hofmann, M.; Berndt, A. Pure Appl. Chem. 2003, 75, 1175-1182.
 (6) Pardoe, J. A. J.; Norman, N. C.; Timms, P. L.; Parsons, S.; Mackie, I.; Pulhalm, C. R.; Rankin, D. W. H. Angew. Chem., Int. Ed. 2003, 42, 571573.

[^1]: (12) Neu, A.; Mennekes, T.; Englert, U.; Paetzold, P.; Hofmann, M.; Schleyer, P. v. R. Angew. Chem., Int. Ed. 1997, 36, 2117-2119.

[^2]: (13) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397-1412.
 (14) Frisch, M. J.; Trucks, G. W.; Schelegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Oritz, J. V.; Foresman, J. B.; Cioslowsky, J.; Stefenov, B. B.; Nanayakkara, A.; Callacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomberts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 98, Version 5.2; Gaussian Inc.: Pittsburgh, PA, 1995.
 (15) B3LYP is Becke's three parameter hybrid method with LYP correlation functional: (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. (c) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211. (d) Stephens, P. J.; Delvin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627.
 (16) Landrum, G. A.; Glassy, W. V. YAeHMOP (Version 3.01) (available at http://yaehmop.sourceforge.net).
 (17) (a) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558-561. (b) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14 251-14 269. (c) Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 11 169-11 886.
 (18) Kresse, G.; Hafner, J. Phys. Rev. B 1999, 59, 1758-1775.
 (19) Perdew, J. P.; Zunger, Z. Phys. Rev. B 1981, 23, 5048-5079.

[^3]: (20) (a) Mach, P.; Hubac, I.; Mavridis, A. Chem. Phys. Lett. 1994, 226, 469474. (b) Mckee, M. L. Inorg. Chem. 1999, 38, 321-330.
 (21) (a) Siebert, W.; Maier, C.-J.; Maier, A.; Greiwe, P.; Bayer, M. J.; Hofmann, M.; Pritzkow, H. Pure Appl. Chem. 2003, 75, 1277-1286. (b) Sahin, Y.; Zieglar, A.; Happel, T.; Meyer, H.; Bayer, M. J.; Pritzkow, H.; Massa, W.; Hofmann, M.; Schleyer, P.v. R.; Siebert, W.; Berndt, A. J. Organomet. Chem. 2003, 680, 244-256.
 (22) The bond distances of the experimental compound $\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{L}}=1.633, \mathrm{~B}_{\mathrm{S}}-\right.$ $\mathrm{B}_{\mathrm{S}}=1.605,1.632$, and $\mathrm{B}_{\mathrm{S}}-\mathrm{B}=1.691$) are comparable to our computed values for the model compound $\mathrm{B}_{4} \mathrm{~F}_{2}\left(\mathrm{BH}_{2}\right)\left(\mathrm{B}_{\mathrm{L}}-\mathrm{B}_{\mathrm{S}}=1.60, \mathrm{~B}_{\mathrm{S}}-\mathrm{B}_{\mathrm{S}}=1.62\right.$, and $\mathrm{B}_{\mathrm{S}}-\mathrm{B}=1.62$).
 (23) Atoji, M.; Lipscomb, W. N. J. Chem. Phys. 1953, 21, 172-176.
 (24) Mennekes, T.; Paetzold, P.; Boese, R.; Blaser, D. Angew. Chem., Int. Ed. 1991, 30, 173-175.
 (25) Maier, C.-J.; Pritzkow, H.; Siebert, W. Angew. Chem., Int. Ed. 1999, 38, 1666-1669.
 (26) For example, see: (a) Mingos, D. M. P.; Johnston, R. L. Polyhedron 1988, 7, 2437-2439. (b) Wu, S. H.; Jones, M. J. Am. Chem. Soc. 1989, 111, 5373-5384. (c) Zhao, M.; Gimarc, B. M. Polyhedron 1995, 14, 131525.
 (27) Lipscomb, W. N. Science (Washington, DC) 1966, 153, 373-378.
 (28) Braunstein, P.; Debellefon, C. D.; Bouaoud, S. E.; Grandjean, D.; Halet, J.-F.; Saillard, J.-Y. J. Am. Chem. Soc. 1991, 113, 5282-5292.

[^4]: (29) Timms, P. L. J. Am. Chem. Soc. 1967, 89, 1629-1632.

[^5]: (30) Baker, R. T. Inorg. Chem. 1986, 25, 109-111. (b) Johnston, R. L.; Mingos, D. M. P. Inorg. Chem. 1986, 25, 3321-3323. (c) Neu, A.; Mennekes, T.; Paetzold, P.; Englert, U.; Hofmann, M.; Schleyer, P. v. R. Inorg. Chim. Acta 1999, 289, 58-69. (d) Mckee, M. L.; Wang, Z. X.; Schleyer, P. v. R. J. Am. Chem. Soc. 2000, 122, 4781-4793. (e) Peynmann, P.; Knobler, C. B.; Khan, S. I.; Hawthorne, M. F. Angew. Chem., Int. Ed. 2001, 40, $1664-$ 1667.
 (31) Rudolph, R. W.; Thompson, D. A. Inorg. Chem. 1974, 13, 2779-2782.

[^6]: (32) (a) Balakrishnarajan, M. M.; Jemmis, E. D. J. Am. Chem. Soc. 2000, 122, 4516-4517. (b) Jemmis, E. D.; Balakrishnarajan, M. M.; Pancharatna, P. D. J. Am. Chem. Soc. 2001, 123, 4313-4323.

[^7]: (33) (a) Hawthorne, M. F.; Pilling, R. L. J. Am. Chem. Soc. 1966, 88, 38733874. (b) DeBoer, B. G.; Zalkin A.; Templeton, D. H. Inorg. Chem. 1968, 7, 1085-1090.
 (34) Hagenmuller, R.; Naslain, R. C. R. Acad. Sci. 1963, 257, 1294-1296.

[^8]: (35) Mingos, D. M. P.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1980, 16741681.

